Type of publication:
Journal articleAuthor(s):
COVIDSurg Collaborative (includes Blair, J of Shrewsbury and Telford Hospital NHS Trust)Citation:
British Journal of Surgery; 2021; vol. 19 (no. 4) p.1-19Abstract:
Since the beginning of the COVID-19 pandemic tens of millions of operations have been cancelled as a result of excessive postoperative pulmonary complications (51.2 per cent) and mortality rates (23.8 per cent) in patients with perioperative SARS-CoV-2 infection. There is an urgent need to restart surgery safely in order to minimize the impact of untreated non-communicable disease. As rates of SARS-CoV-2 infection in elective surgery patients range from 1–9 per cent, vaccination is expected to take years to implement globally9 and preoperative screening is likely to lead to increasing numbers of SARS-CoV-2-positive patients, perioperative SARS-CoV-2 infection will remain a challenge for the foreseeable future. In order to inform consent and shared decision making, a robust, globally applicable score is needed to predict individualized mortality risk for patients with perioperative SARS-CoV-2 infection. The authors aimed to develop and validate a machine learning-based risk score to predict postoperative mortality risk in patients with perioperative SARS-CoV-2 infection.Link to full-text [OpenAccess - no password required]
Altmetrics: